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Abstract 
Peristaltic flow of a Herschel-Bulkley fluid in contact with a Newtonian fluid in a circular tube is studied. The 

interface which is a stream line is determined by solving a non-linear equation. The expressions for the velocity, the 
stream function and the pressure rise are obtained. The effects of different parameters on the flow phenomenon are 
discussed using graphical representation. Here some interesting results were obtained which warrant further 
investigation on the flow of two immiscible fluids in a circular tube with flexible walls. High amplitude gives rise to a 
thicker core layer in the first half wave length of the tube region and high amplitude gives rise to a thinner core layer in 
the second half wave length region of the tube.   
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Introduction 
 Physiological fluids in human and animal 
bodies are pumped by the continuous periodic muscular 
oscillations of the ducts. These oscillations are presumed 
to be caused by the progressive transverse contraction 
waves that propagate along the walls of the ducts. 
Peristalsis is the mechanism of the fluid transport that 
occurs generally from a region of lower pressure to 
higher pressure when a progressive wave of area 
contraction and expansion travels along the flexible wall 
of the tube. Peristaltic flow occurs widely in the 
functioning of the ureter, food mixing and chyme 
movement in the intestine. There are many important 
applications of this principle such as the design of roller 
pumps, which are useful in pumping fluids without 
contamination due to contact with the pumping 
machinery. 
 In 1966, Latham made the first experimental 
study on the mechanics of peristaltic transport. The 
results of the experiments were found to be in good 
agreement with the theoretical results of Shapiro[1]. 
Based on this experimental work, Burns and Parkes [2] 
studied the peristaltic motion of a viscous fluid through a 
pipe and a channel by considering sinusoidal variations 
at the walls. Shapiro et al. [3] analyzed the peristaltic 
pumping with long wave length and low Reynolds 
number assumptions. The small Reynolds number 
assumption of Shapiro et al. [4] was endorsed by Jaffrin 
[5], who extended the analysis by considering the higher 

order terms to include cases where the Reynolds number 
was higher. Barton and Raynor [6] studied peristaltic 
flow in tubes using long wavelength approximations. 
Peristaltic waves in circular cylindrical tubes were 
analyzed by Yin and Fung [7] and a complete review of 
peristaltic transport is given by Jaffrin and Shapiro [8] 
 We know, that a Herschel-Bulkley fluid is a 
semisolid rather than an actual fluid. We know by 
definition such a fluid cannot support a shear stress. This 
implies that materials that have an yield stress are not 
fluids such materials are referred to as Yield stress fluids. 
A detailed discussion of the inappropriateness of the use 
of such models for fluids is discussed in the recent 
review paper by Krishnan and Rajagopal [9]. While such 
materials might not to be fluids, there is value in 
studying them as they give some idea of the behavior of 
fluids of interest under certain limits.   
 Radha Krishnama Charya [10] discussed 
Perisistaltic motion of a power - low fluid using long 
wave length approximations. Also Radha Krishnama 
Charya et al. [11] analysed heat transfer the peristaltic 
transport in a non-uniform channel. Srinivas et al. [12] 
studied the influence of heat and mass transfer on MHD 
peristaltic flow through a porous space with complaint 
walls. Mixed convective heat and mass transfer in an 
asymmetric channel with peristalsis is investigated by 
Srinivas et al. [13].    
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Among models of semisolids the Herschel-Bulkley 
model is preferable because it describes blood behavior 
very closely and Newtonian, Bingham and Power-law 
models can be derived as special cases. Vajravelu et al. 
[14] studied the peristaltic motion of Herschel-Bulkley 
fluid in contact with a Newtonian fluid between flexible 
rigid walls. Recently Vajravelu et al. [15] investigated 
the peristaltic flow of Casson fluid in contact with a 
Newtonian fluid between permeable layers. Narahari et 
al. [16] studied the peristaltic transport of Bingham fluid 
in contact with a Newtonian fluid. 
 Motivated by these studies axisymmetric 
analysis is made for the peristaltic pumping of a two 
fluid system (Herschel-Bulkley fluid in contact with a 
Newtonian fluid) in a circular tube with flexible wall. 
The interface which is a stream line is determined by 
solving a non-linear equation. The expressions for the 
velocity, the stream function and the pressure rise are 
obtained. Some deductions are made and they are found 
to agree with earlier works.  

 
Nomenclature 

0τ   Yield stress 

 1u   Velocity of the core layer  

2u   Velocity of the peripheral layer  

1µ   Viscosity of the Herschel-Bulkley fluid 

2µ   Viscosity of the Newtonian fluid 

p  Pressure 

pu   Plug flow velocity 

pr   Plug radius 

U  Average radius of the tube 

1h   Interface 

 

 
Mathematical Formulation of the Problem 

Consider the peristaltic transport of a Herschel-Bulkley in contact with a Newtonian fluid in a tube of radius ‘a’. 
The core region of the tube contains Herschel-Bulkley fluid where as the peripheral region is occupied by a Newtonian 
fluid. The flow is axisymmetric. The axisymmetric geometry facilitates the choice of cylindrical polar coordinate system (�,Θ, �) to study the problem. The wall deformation due to the propagation of an infinite train of peristaltic waves is 
represented by � = �(�, �) = 	 + ��
� ��� (� − ��)                                       (1) 

where b is the amplitude, λ is the wavelength and c is the wave speed. 
Under the assumptions that tube length is an integral multiple of the wavelength λ and the pressure across the ends of the 
tube is a constant, the flow is inherently unsteady in the laboratory frame (�, �, �) which is moving with velocity � along 
the wave. The transformation between these two frames is given by � =  �,        � =  Θ      , � =  � − ��,   �(�)   =   �(�, �)       (2) 
The basic equations governing the motion of the fluids are: 

            
����� = 0,                                      0 ≤ � ≤ ��                    (3) 

��� = !"� ��� #� $%" &− ��'�� () + *+,-,   �� ≤ � ≤ ℎ"                   (4) ��� = !"� ��� #� $−%� &��/�� (, - ,   ℎ" ≤ � ≤ ℎ                           (5) 

where *+ is the yield stress. 
and the corresponding boundary conditions are 
 0" = 0�  at � = ��     0" = 0�  at � = ℎ"     *" = *�  at � = ℎ"    0� =  −�  at � = ℎ 
 
Nondimensionalization of the Flow Quantities 
          The following non-dimensionalized quantities are introduced to make the basic equations and the boundary 
conditions dimensionless: 

012 = 02�  , �̅ = �4  , �̅ = �	  , ℎ1 = ℎ	  , ℎ12 = ℎ2	  , �̅ = �4 � , �̅ = 	)5"�)4%�  �,  
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*+̅ = 67
879/  *+, *�̅ = 67

879/  *�, *:̅ = 67
879/  *: , % = 

9;9/, 
b

a
φ =               (6) 

The equations governing the motion become (ignoring the bars) <0�<� = 0                                                                                                             (7) <�<� = −1� <<� ?� @A− <0"<� B) + *+CD                                                               (8) <�<� = −1� <<� F� G−% A<0�<� BHI                                                                        (9) 

The boundary conditions in dimensionless form are 0" = 0�   at � = rL                         (10) 0" = 0� at � = ℎ"                    (11) 
 *" = *�   at � = h"                   (12) 
  0� = −1 at � = h                   (13) 
 
Solution of the Problem 

Solving the equations (7)-(9) subject to the boundary conditions (11) - (13) we get, 

0" = N4% Pℎ�−ℎ"�Q − 1 + 2�� + 1 1N SANℎ"2 − *+B'75" − AN�2 −*+B'75"T , 1pr r h≤ ≤ (14) 

0� = Uℎ� − ��4% V N − 1, 1h r h≤ ≤                                                                   (15) 

and the plug velocity is obtained as  

0� = 14% Pℎ�−ℎ"�QN − 1 + 2�� + 1 1N SANℎ"2 − *+B'75" − AN��2 −*+B'75"T 0 pr r≤ ≤   (16) 

where N = − ���  

The flow rate q across any cross section is independent of z under lubrication approach and is given by  

Y = Y� + Y" + Y� = 2 Z �0�[���
+ + 2 Z �0"[�\'

�� + 2 Z �0�[�\
\'        

Y = ��/
]9 Pℎ� − ℎ"�Q − ℎ� + ]^(_5") &^\'� − *+(_5" G\'/

� − �\'^(_5") &^\'� − *+( + ]^/(_5�)(_5:) &^\'� − *+(�H + ]̂9 $2ℎ�ℎ"� +
���ℎ"� − ���ℎ� − :\'`

� − \'`
� ,                                                        (17)  

where q1 and q2 are the core and peripheral layer flow rates respectively.  The dimensionless average volume flow rate Q  

over one wavelength is obtained as      

a1 = 2 Z Z �(02 + 1)[�[�\
+

"
+ = Y + Z ℎ�[�"

+                                (18) 

where 0 = 0" bc� 0 ≤ � ≤ ℎ" , 0 = 0� bc� ℎ" ≤ � ≤ ℎ  
 We define 

1 1i i
i iu and v

r r r z

ψ ψ∂ ∂= = −
∂ ∂

 02 and d2  are axial and radial velocities respectively.   

The solutions in terms of the stream functions can be obtained by using the 

conditions 0 0p at rψ = = , 2 2
q at r hψ = = , 2 p pat r rψ ψ= = in (14) and (15) They are given by  

( ) ( ) ( )

11 112
2 2 1

1

2 2
1 ,0

2 4 1 2 1 2

nn p
p p

Phr p n ph n
h h o o r r

n p n p
ψ τ τ

µ

++ 
   = − + − + − − − ≤ ≤   + +     
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( ) ( ) ( ) ( ) ( )
( )( )

2 3
2 2 2

12 2
1 1 1 1.

2 4 2 2 1 2 2 2 3

K K
K

K p p

pK

r r r r rr p r P r
B h h h r

K K K K
ψ

µ

+ +
+

 − − = − + − + − − + + + + +  

 

where 
( ) ( ) ( )

112 2
1

1
1 1

.
,

1 2 2 2 1 2

kk K
Kp p p

pK

r r pr rPh p
B o o h r

n P K
τ τ

++
+   = − − − − −   + +    

 

2 2 2 2 4 4

2 2 2 4 2 4 4

q h r P h r r hψ
µ

   −= + + − −   
   

  

where 
1p

P and K
z n

∂= − =
∂                                                                 

(19	&�) 

The interface 
The equation for the interface is obtained from the condition f" = g'�   at  � = ℎ". Substituting in equation (19a) we have,                                         

( ) ( ) ( ) ( ) ( )
( )( )

1 2
2

1 1 1 12 2 2 1
1 1 1 1 11

2
4 2 1 2 2 2 3

K K
K

K p p

pK

h h r h rP P h
Q B h h h h r

K K K Kµ

+ +
+

−

 − − = + − + − − + + + + +  

(20) 

Using the condition f� = g'�   at � = ℎ" in equation (19b), the pressure gradient is obtained as <�<� = 8%(a − a")2ℎ"�ℎ� − ℎ"] − ℎ]                                                                            (21) 

Integrating the above equation with respect to z we obtain the pressure as: 
∆� = 8%ah" − 8%a"h" 8%(a − a")h,                                                     (22) 

iℎj�j   h" = Z [�2ℎ"�ℎ� − ℎ"] − ℎ]
"

+
 

The equation for the interface is given by 

( ) ( )
( )

( )
( ) ( )

( ) ( ) ( )
( ) ( )

1 1 32 2 2 2
1 1 1 1 1 1 1 11

1 112 2 4 4 2 4 4
1 1 1 1

2 8 1
2

2 1 2 2 2 32 2

k K K K

p p p

K

Q Q h h h h h r h h r h rQ Q
B Q

K K K Kh h h h h h h h

µ
+ + +

+

  − − − −− −   − + − + =   + + + +− − − −      
                     (23) 

where a" = Y" + ℎ"� , k = ") and a = Y + ℎ� 

The equation (23) has to he solved for h1 for each z in the interval    (0, h(z)) where h(z)=1+φ  sin 2π z, the core 

flow rate ( )1 1q or Q  is determined using the condition 1 0h at zα= =  in the above equation. 

This expression ( )1 1q or Q is used in the equation (23) and the interface ( )1h z  is calculated numerically using 

Mathematica package.    
 

Results and Discussions 
The peristaltic transport of Herschel-Bulkley 

fluid in contact with a Newtonian fluid in a circular tube 
is investigated. The effects of different parameters on the 
velocity, the interface and the pressure rise are discussed. 
The equation of the interface is also obtained.       

From Fig 2 it is observed that as the ratio of 
viscosity increases, the velocity of the fluid flow is 
decreasing. Fig 3 shows the variation of velocity with 
radius for different values of amplitude ratio. Here we  

 
 
notice that as the amplitude ratio increases, the velocity 
is increasing, further the effect of the amplitude ratio is 
more in the peripheral region when compared with the 
core region. Fig (4) infer that as the Power-law index is 
increasing the velocity is decreasing in the region 0 ≤ � ≤ 0.5 and there no significant change in the region 0.6 ≤ � ≤ 1.5.  
         The shape of the interface for different values of 
ratio of viscosity is shown in Fig 5. Higher values of 
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ratio of viscocities  gives rise to a thicker core layer in 
the first half wave length of the tube region and higher 
values of ratio of viscocities gives rise to a thicker 
peripheral layer in the second half wave length region of 
the tube. The shape of the interface for different values 
of power-law index is shown in Fig 6. Here we observe 
that there is no significant effect of power-law index in 
the first half wave length of the tube region and low 
value of power-law index, n, gives rise to a thinner 
peripheral layer in the second half wave length region of 
the tube. The shape of the interface for different 
amplitude ratios is shown in Fig 7. High amplitude gives 
rise to a thicker core layer in the first half wave length of 
the tube region and high amplitude gives rise to a thinner 
core layer in the second half wave length region of the 
tube. The shape of the interface for different values of 
plug radius is shown in Fig 8. Here we observe that the 
effect of plug radius has no significant change in the first 
half wave length of the tube region and high plug radius 
gives rise to a thicker core layer in the second half wave 
length region of the tube. Fig 9 shows the variation of 
pressure rise with flux for different values of amplitude 
ratio. Here we observe that as the amplitude ratio 
increases, the pressure is increasing and also we observe 
that as the flux increases the pressure is decreasing. 
 

 
Fig 1: Physical Model 

 
Fig 2: Variation of velocity with radius for differ ent values 
of ratio of viscosities with the values of P=-1, τ=0.5, k=0.2, 

h1= 0.5, z=0.3, φ=0.6 and rp=0.2. 

 
Fig 3: Variation of velocity with radius for differ ent values 

of amplitude ratio with the values of P=-1, τ=0.5, k=0.2, h1= 
0.5, z=0.3, µ=0.2 and rp=0.2. 

 

 
Fig 4: Variation of velocity with radius for differ ent values 
of Power-law index with the values of P=-1, τ=0.5, φ=0.6, 

h1= 0.5, z=0.3, µ=0.2 and rp=0.2. 
 

 
Fig 5: The shape of the interface for different values of ratio 

of viscosity with the values  m = n. o; q = −r, s = t, uv =n. w, x = n. r 
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Fig 6: The shape of the interface for different values of ratio 
of power-law index with the values m = n. o; , q = −r, y =t, uv = n. w, x = n. r 

 

 
Fig 7: The shape of the interface for different values of 
amplitude ratio with the values m = n. o; q = −r, y =t, uv = n. w, x = n. r 

 
 

 
Fig 8: The shape of the interface for different values of plug 
radius with the values m = n. o; q = −r, y = t, z = t, x =n. r 

Fig 9: Variation of ∆p with Q for different values of 
amplitude ratio for fixed values of k=2, µ=2, τ=0.2. 
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